Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34564599

RESUMO

The alpha (CPA), beta (CPB) and epsilon (ETX) toxins of Clostridium perfringens are responsible for causing diseases that are difficult to eradicate and have lethal potential in production animals. Vaccination of herds is still the best control strategy. Recombinant clostridial vaccines have shown good success at inducing neutralizing antibody titers and appear to be a viable alternative to the conventional production of commercial clostridial toxoids. Research is still needed on the longevity of the humoral immune response induced by recombinant proteins in immunized animals, preferably in target species. The objective of this study was to measure the humoral immune response of cattle immunized with trivalent vaccines containing the recombinant proteins alpha (rCPA), beta (rCPB) and epsilon (rETX) of C. perfringens produced in Escherichia coli at three different concentrations (100, 200, and 400 µg) of each protein for 12 months. The recombinant vaccines containing 200 (RV2) and 400 µg (RV3) yielded statistically similar results at 56 days. They performed better throughout the study period because they induced higher neutralizing antibody titers and were detectable for up to 150 and 180 days, respectively. Regarding industrial-scale production, RV2 would be the most economical and viable formulation as it achieved results similar to RV3 at half the concentration of recombinant proteins in its formulation. However, none of the vaccines tested induced the production of detectable antibody titers on day 365 of the experiment, the time of revaccination typically recommended in vaccination protocols. Thus, reiterating the need for research in the field of vaccinology to achieve greater longevity of the humoral immune response against these clostridial toxins in animals, in addition to the need to discuss the vaccine schedules and protocols adopted in cattle production.


Assuntos
Anticorpos Neutralizantes/sangue , Toxinas Bacterianas/imunologia , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Infecções por Clostridium/imunologia , Infecções por Clostridium/prevenção & controle , Clostridium perfringens/imunologia , Proteínas Recombinantes/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Toxinas Bacterianas/toxicidade , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Brasil , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/microbiologia , Infecções por Clostridium/veterinária , Proteínas Recombinantes/administração & dosagem
2.
Toxins (Basel) ; 13(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34437437

RESUMO

In horses, Clostridium perfringens is associated with acute and fatal enterocolitis, which is caused by a beta toxin (CPB), and myonecrosis, which is caused by an alpha toxin (CPA). Although the most effective way to prevent these diseases is through vaccination, specific clostridial vaccines for horses against C. perfringens are not widely available. The aim of this study was to pioneer the immunization of horses with three different concentrations (100, 200 and 400 µg) of C. perfringens recombinant alpha (rCPA) and beta (rCPB) proteins, as well as to evaluate the humoral immune response over 360 days. Recombinant toxoids were developed and applied to 50 horses on days 0 and 30. Those vaccines attempted to stimulate the production of alpha antitoxin (anti-CPA) and beta antitoxin (anti-CPB), in addition to becoming innocuous, stable and sterile. There was a reduction in the level of neutralizing anti-CPA and anti-CPB antibodies following the 60th day; therefore, the concentrations of 200 and 400 µg capable of inducing a detectable humoral immune response were not determined until day 180. In practical terms, 200 µg is possibly the ideal concentration for use in the veterinary industry's production of vaccines against the action of C. perfringens in equine species.


Assuntos
Antígenos de Bactérias/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Infecções por Clostridium/prevenção & controle , Doenças dos Cavalos/prevenção & controle , Toxoides/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Infecções por Clostridium/veterinária , Clostridium perfringens/imunologia , Feminino , Cavalos/imunologia , Imunidade Humoral , Masculino , Proteínas Recombinantes/administração & dosagem , Toxoides/genética , Vacinação
3.
Pesqui. vet. bras ; 40(10): 776-780, Oct. 2020. tab, graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1143413

RESUMO

Clostridium perfringens is considered one of the main causative agents of superacute enterocolitis, usually fatal in the equine species, due to the action of the ß toxin, and is responsible for causing severe myonecrosis, by the action of the α toxin. The great importance of this agent in the equine economy is due to high mortality and lack of vaccines, which are the main form of prevention, which guarantee the immunization of this animal species. The aim of this study was to evaluate three different concentrations (100, 200 and 400µg) of C. perfringens α and ß recombinant toxoids in equine immunization and to compare with a group vaccinated with a commercial toxoid. The commercial vaccine was not able to stimulate an immune response and the recombinant vaccine was able to induce satisfactory humoral immune response in vaccinated horses, proving to be an alternative prophylactic for C. perfringens infection.(AU)


Clostridium perfringens é considerado um dos principais agentes causadores de enterocolites superagudas, geralmente fatais na espécie equina, devido à ação da toxina ß, além de ser responsável por causar quadros graves de mionecrose, pela ação da toxina α. A grande importância desses agentes na equinocultura, deve-se a elevada mortalidade e a inexistência de vacinas, principal forma de prevenção, que garantam a imunização dessa espécie animal. O objetivo deste trabalho foi avaliar três diferentes concentrações (100, 200 e 400µg) dos toxóides recombinantes α e ß de C. perfringens na imunização de equinos, bem como comparar com um grupo vacinado com um toxóide comercial. A vacina comercial não se mostrou capaz de estimular uma resposta imune e a vacina recombinante foi capaz de induzir resposta imune humoral satisfatória em equinos vacinados, provando ser uma alternativa profilática para infecção por C. Perfringens.(AU)


Assuntos
Animais , Toxoides , Enterocolite Pseudomembranosa/veterinária , Vacinas Sintéticas/uso terapêutico , Clostridium perfringens/imunologia , Gangrena Gasosa/veterinária , Cavalos , Imunização/veterinária
4.
Anaerobe ; 63: 102201, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32247696

RESUMO

Botulism is a neuroparalytic intoxication, usually fatal, caused by the botulinum toxins (BoNTs). Vaccination is the best-known strategy to prevent this disease in ruminants. Serotypes C and D and their variants CD and DC are the main types responsible for botulism in bovine and buffaloes in Brazil and cattle in Japan and Europe. Brazil has a herd of approximately 1.39 million buffaloes and is the largest producer in the Western world. This study aimed to assess the humoral immune response of buffaloes during the 12-month period after vaccination against BoNT serotypes C and D with a recombinant vaccine in three different concentrations (100, 200, and 400 µg) of non-purified recombinant proteins (Vrec) and also with a bivalent commercial toxoid (Vcom). Vrec400 was the best vaccine among those tested because it induced higher levels of antibodies and maintained higher levels of antibodies for the longest time, while Vrec200 could be considered the most cost-effective vaccine for large-scale production. None of the vaccines were able to promote continuous immunological protection within the timeframe proposed by the current Brazilian vaccination protocol. Further studies should focus on vaccine adjustments to ensure continued humoral protection against botulism.


Assuntos
Botulismo/terapia , Búfalos/microbiologia , Imunidade Humoral , Vacinação/veterinária , Vacinas Sintéticas/imunologia , Animais , Anticorpos Antibacterianos , Anticorpos Neutralizantes , Vacinas Bacterianas/imunologia , Toxinas Botulínicas/imunologia , Botulismo/imunologia , Botulismo/veterinária , Búfalos/imunologia , Bovinos , Clostridium/imunologia , Proteínas Recombinantes/imunologia
5.
Vaccine ; 38(11): 2519-2526, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32037222

RESUMO

Botulism is a paralytic disease caused by the intoxication of neurotoxins produced by Clostridium botulinum. Among the seven immunologically distinct serotypes of neurotoxins (BoNTs A - G), serotypes C and D, or a chimeric fusion termed C/D or D/C, are responsible for animal botulism. The most effective way to prevent botulism in cattle is through vaccination; however, the commercially available vaccines produced by detoxification of native neurotoxins are time-consuming and hazardous. To overcome these drawbacks, a non-toxic recombinant vaccine was developed as an alternative. In this study, the recombinant protein vaccine was produced using an Escherichia coli cell-based system. The formaldehyde-inactivated E. coli is able to induce 7.45 ± 1.77 and 6.6 ± 1.28 IU/mL neutralizing mean titers against BoNTs C and D in cattle, respectively, determined by mouse neutralization bioassay, and was deemed protective by the Brazilian legislation. Moreover, when the levels of anti-BoNT/C and D were compared with those achieved by the recombinant purified vaccines, no significant statistical difference was observed. Cattle vaccinated with the commercial vaccine developed 1.33 and 3.33 IU/mL neutralizing mean titers against BoNT serotypes C and D, respectively. To the best of our knowledge, this study is the first report on recombinant E. coli bacterin vaccine against botulism. The vaccine was safe and effective in generating protective antibodies and, thus, represents an industry-friendly alternative for the prevention of cattle botulism.


Assuntos
Vacinas Bacterianas/imunologia , Toxinas Botulínicas/imunologia , Botulismo/veterinária , Doenças dos Bovinos/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Botulismo/prevenção & controle , Brasil , Bovinos , Doenças dos Bovinos/microbiologia , Clostridium botulinum , Escherichia coli , Camundongos , Testes de Neutralização , Proteínas Recombinantes/imunologia , Vacinas Sintéticas
6.
Toxins (Basel) ; 10(10)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241350

RESUMO

Botulism is a potentially fatal intoxication caused by botulinum neurotoxins (BoNTs) produced mainly by Clostridium botulinum. Vaccination against BoNT serotypes C and D is the main procedure to control cattle botulism. Current vaccines contain formaldehyde-inactivated native BoNTs, which have a time-consuming production process and pose safety risks. The development of non-toxic recombinant vaccines has helped to overcome these limitations. This study aims to evaluate the humoral immune response generated by cattle immunized with non-purified recombinant fragments of BoNTs C and D. Cattle were vaccinated in a two-dose scheme with 100, 200 and 400 µg of each antigen, with serum sampling on days 0, 56, 120, and 180 after vaccination. Animals who received either 200 or 400 µg of both antigens induced titers higher than the minimum required by the Brazilian ministry of Agriculture, Livestock and Food Supply and achieved 100% (8/8) seroconversion rate. Animals vaccinated with commercial toxoid vaccine had only a 75% (6/8) seroconversion rate for both toxins. Animals that received doses containing 400 µg of recombinant protein were the only ones to maintain titers above the required level up until day 120 post-vaccination, and to achieve 100% (8/8) seroconversion for both toxins. In conclusion, 400 µg the recombinant Escherichia coli cell lysates supernatant was demonstrated to be an affordable means of producing an effective and safe botulism vaccine for cattle.


Assuntos
Vacinas Bacterianas/farmacologia , Toxinas Botulínicas/imunologia , Botulismo/prevenção & controle , Doenças dos Bovinos/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Bovinos , Imunidade Humoral/efeitos dos fármacos , Vacinas Sintéticas/farmacologia
7.
Toxins (Basel) ; 9(10)2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28937601

RESUMO

Botulism is a fatal intoxication caused by botulinum neurotoxins (BoNTs), which are mainly produced by Clostridium botulinum and characterized by flaccid paralysis. The BoNTs C and D are the main serotypes responsible for botulism in animals, including buffaloes. Botulism is one of the leading causes of death in adult ruminants in Brazil due to the high mortality rates, even though botulism in buffaloes is poorly reported and does not reflect the real economic impact of this disease in Brazilian herds. Vaccination is reported as the most important prophylactic measure for botulism control, although there are no specific vaccines commercially available for buffaloes in Brazil. This study aimed to evaluate the humoral immune response of buffalo groups vaccinated with three different concentrations of recombinant proteins (100, 200, and 400 µg) against BoNTs serotypes C and D as well as to compare the groups to each other and with a group vaccinated with a bivalent commercial toxoid. The recombinant vaccine with a concentration of 400 µg of proteins induced the highest titers among the tested vaccines and was proven to be the best choice among the formulations evaluated and should be considered as a potential vaccine against botulism in buffalo.


Assuntos
Vacinas Bacterianas/imunologia , Toxinas Botulínicas/imunologia , Botulismo/veterinária , Búfalos/imunologia , Imunidade Humoral , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Botulismo/prevenção & controle , Búfalos/microbiologia , Feminino , Masculino , Proteínas Recombinantes/imunologia , Sorogrupo , Vacinas Sintéticas/imunologia
8.
Pesqui. vet. bras ; 37(7): 697-700, jul. 2017.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-895480

RESUMO

Botulism is a poisoning caused by botulinum neurotoxins (BoNTs). BoNTs serotypes C and D are involved in botulism outbreaks in cattle in several countries. Despite the high number of buffaloes worldwide, the real impact of botulism in buffaloes is not known, because it is not a notifiable disease in Brazil and only few studies have evaluated the occurrence of the disease in buffaloes. Those studies did not conduct diagnostic tests to confirm the presence of BoNTs. The objective of the present study was to describe three outbreaks of botulism in buffaloes in the Brazilian Amazon region considering epidemiological and clinical data as well as laboratory diagnosis to confirm the presence of BoNTs. The results of the bioassay were negative in the tissues and in feed samples, but positive for BoNT C in water samples. Confirmation of the occurrence of botulism in buffaloes allows the implementation of preventive strategies in susceptible herds. Waterborne botulism in buffaloes is prevented by ensuring the constant circulation of water collections and restricting the presence of dead animals and bones in order to prevent the accumulation of organic matter and the development of anaerobic conditions, which might favor the replication of Clostridium botulinum. Another measure that can be adopted is the shading of the pasture, in order to maintain the thermal comfort for the buffaloes and to avoid the excess of permanence of them in the water pools.(AU)


Botulismo é uma intoxicação causada por neurotoxinas botulínicas (BoNTs). Os sorotipos C e D de BoNTs estão envolvidos em surtos de botulismo em bovídeos em vários países. Apesar do elevado número de búfalos em todo o mundo, o real impacto do botulismo em búfalos não é conhecido; pois não é uma doença de notificação obrigatória no Brasil e poucos estudos avaliaram a incidência desta doença em búfalos. Além disso, estes estudos não realizaram testes diagnósticos para confirmar a presença de BoNTs. O objetivo do presente estudo foi descrever três surtos de botulismo em búfalos na região amazônica brasileira, considerando dados epidemiológicos e clínicos, bem como o diagnóstico laboratorial para confirmar a presença de BoNTs. Os resultados do bioensaio em camundongos foram negativos em todos os tecidos e nas amostras de alimentos testados; no entanto foram positivos para BoNT C nas amostras de água. A confirmação da ocorrência de botulismo em búfalos permite a implementação de estratégias preventivas nos rebanhos. O botulismo hídrico nos búfalos pode ser prevenido assegurando-se que coleções de água fossem mantidas limpas, sem a presença de animais mortos e ossadas no seu interior e não permitindo o acúmulo de matéria orgânica e condições de anaerobiose favoráveis à multiplicação de Clostridium. botulinum. Outra medida que pode ser adotada é o sombreamento das pastagens, a fim de manter o conforto térmico dos búfalos e assim evitar o excesso de sua permanência dentro das fontes de água.(AU)


Assuntos
Animais , Camundongos , Botulismo/veterinária , Botulismo/epidemiologia , Búfalos/virologia , Clostridium botulinum tipo C/isolamento & purificação , Bioensaio/veterinária , Ecossistema Amazônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...